Two Pathways of Synaptic Vesicle Retrieval Revealed by Single-Vesicle Imaging

نویسندگان

  • Yongling Zhu
  • Jian Xu
  • Stephen F. Heinemann
چکیده

Synaptic vesicle recycling is essential for maintaining efficient synaptic transmission. Detailed dissection of single-vesicle recycling still remains a major challenge. We have developed a fluorescent pH reporter that permits us to follow the fate of individual vesicles at hippocampal synapses after exocytosis. Here we show that, during low-frequency stimulation, single-vesicle fusion leads to two distinct vesicle internalizations, instead of one, as in general perception: one by a fast endocytosis pathway ( approximately 3 s), the other by a slow endocytosis pathway (after 10 s). The exocytosed vesicular proteins are preferentially recaptured in both pathways. RNAi knockdown of clathrin inhibits both pathways. As stimulation frequency increases, the number of endocytosed vesicles begins to match antecedent exocytosis. Meanwhile, the slow endocytosis is accelerated and becomes the predominant pathway. These results reveal that two pathways of endocytosis are orchestrated during neuronal activity, establishing a highly efficient endocytosis at central synapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptophysin Regulates the Kinetics of Synaptic Vesicle Endocytosis in Central Neurons

Despite being the most abundant synaptic vesicle membrane protein, the function of synaptophysin remains enigmatic. For example, synaptic transmission was reported to be completely normal in synaptophysin knockout mice; however, direct experiments to monitor the synaptic vesicle cycle have not been carried out. Here, using optical imaging and electrophysiological experiments, we demonstrate tha...

متن کامل

Synaptotagmin-1- and Synaptotagmin-7-Dependent Fusion Mechanisms Target Synaptic Vesicles to Kinetically Distinct Endocytic Pathways

Synaptic vesicle recycling is essential for maintaining normal synaptic function. The coupling of exocytosis and endocytosis is assumed to be Ca2+ dependent, but the exact role of Ca2+ and its key effector synaptotagmin-1 (syt1) in regulation of endocytosis is poorly understood. Here, we probed the role of syt1 in single- as well as multi-vesicle endocytic events using high-resolution optical r...

متن کامل

Rustling Synaptic Vesicle Cargo after Exocytosis

In this issue of Neuron, Voglmaier et al. provide new evidence that the retrieval of synaptic vesicle transporters after exocytosis proceeds along at least two different endocytic pathways. This work provides new insight into the mechanisms of sorting synaptic vesicle cargo at the cell surface.

متن کامل

Synaptic Vesicle Endocytosis: Get Two for the Price of One?

Tight coupling between synaptic vesicle exocytosis and endocytosis is critical for the maintenance of neurotransmission. In this issue of Neuron, Zhu et al. reveal a surprising facet of this coupling by showing that, at low frequencies, fusion of a single vesicle leads to retrieval of two vesicles with dissimilar attributes.

متن کامل

Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses

Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2009